F(-2)=x^2+6(-2)-3

Simple and best practice solution for F(-2)=x^2+6(-2)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(-2)=x^2+6(-2)-3 equation:



(-2)=F^2+6(-2)-3
We move all terms to the left:
(-2)-(F^2+6(-2)-3)=0
We add all the numbers together, and all the variables
-(F^2+6(-2)-3)-2=0
We calculate terms in parentheses: -(F^2+6(-2)-3), so:
F^2+6(-2)-3
determiningTheFunctionDomain F^2-3+6(-2)
We add all the numbers together, and all the variables
F^2-15
Back to the equation:
-(F^2-15)
We get rid of parentheses
-F^2+15-2=0
We add all the numbers together, and all the variables
-1F^2+13=0
a = -1; b = 0; c = +13;
Δ = b2-4ac
Δ = 02-4·(-1)·13
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*-1}=\frac{0-2\sqrt{13}}{-2} =-\frac{2\sqrt{13}}{-2} =-\frac{\sqrt{13}}{-1} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*-1}=\frac{0+2\sqrt{13}}{-2} =\frac{2\sqrt{13}}{-2} =\frac{\sqrt{13}}{-1} $

See similar equations:

| 3x/2-1=-19 | | x*x+x*x+x*x=30 | | 8x+13/3=23 | | 49x=-x^2 | | d/2+16=18 | | 9=10y-9y | | 5x-4=-2x-5=3 | | 215+27.5x=2827.5 | | 6x-9=-3(2x-3) | | 9x-2+1=4x-2-9 | | (n-2)180/n=108 | | 5x+10x=3+24x | | 5+14x=7(2x)-5 | | x-3/5-8=-4 | | 2x+0.25=0.50 | | 5.9-m=-4.5-5 | | 12p=p= | | 46=6-4y | | 5x+3x=10+24 | | 3m+13=82 | | 10y-40=180 | | 2m-14=42 | | 10+5x=-24+3x | | 5b-8=36+24 | | 4.5+j=7.2 | | 4y+6y-10=180 | | 45+5x=17+9x | | ⅓(x-15)=95 | | 7^-9x+1=49^-12 | | 5x+9/2=11 | | 5x-5+7x+2=75 | | 1.2(x–2)=2–x |

Equations solver categories